Math for Scientists, Refreshing the Essentials by Natasha Maurits and Branislava Curcic Blake

Book FormatPDF
Language English
Pages 240
Views 1,858
Size 6.1 MiB
Downloads 1009
Math for Scientists, Refreshing the Essentials by Natasha Maurits and Branislava Curcic Blake


Math for Scientists, Refreshing the Essentials by Natasha Maurits and Branislava Curcic Blake is available for free download in PDF format

Math for Scientists, Refreshing the Essentials Contents

1 Numbers and Mathematical Symbols . . . . . . . . . . . . . . . . . . . . . 1
Natasha Maurits
1.1 What Are Numbers and Mathematical Symbols
and Why Are They Used? . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Classes of Numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2.1 Arithmetic with Fractions . . . . . . . . . . . . . . . . . . . 5
1.2.2 Arithmetic with Exponents and Logarithms . . . . . . . . . . . 8
1.2.3 Numeral Systems . . . . . . . . . . . . . . . . . . . . . . . 10
1.2.4 Complex Numbers . . . . . . . . . . . . . . . . . . . . . . . 12
1.3 Mathematical Symbols and Formulas . . . . . . . . . . . . . . . . . . 16
1.3.1 Conventions for Writing Mathematics . . . . . . . . . . . . . 17
1.3.2 Latin and Greek Letters in Mathematics . . . . . . . . . . . . 17
1.3.3 Reading Mathematical Formulas . . . . . . . . . . . . . . . . 17
Glossary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Symbols Used in This Chapter (in Order of Their Appearance) . . . . . . . . . 20
Overview of Equations, Rules and Theorems for Easy Reference . . . . . . . . 21
Answers to Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2 Equation Solving . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
Branislava Ćurčic-Blake
2.1 What Are Equations and How Are They Applied? . . . . . . . . . . . . 27
2.1.1 Equation Solving in Daily Life . . . . . . . . . . . . . . . . . 28
2.2 General Definitions for Equations . . . . . . . . . . . . . . . . . . . . 29
2.2.1 General Form of an Equation . . . . . . . . . . . . . . . . . . 29
2.2.2 Types of Equations . . . . . . . . . . . . . . . . . . . . . . . 29
2.3 Solving Linear Equations . . . . . . . . . . . . . . . . . . . . . . . . 29
2.3.1 Combining Like Terms . . . . . . . . . . . . . . . . . . . . 30
2.3.2 Simple Mathematical Operations with Equations . . . . . . . . 31
2.4 Solving Systems of Linear Equations . . . . . . . . . . . . . . . . . . . 32
2.4.1 Solving by Substitution . . . . . . . . . . . . . . . . . . . . . 34
2.4.2 Solving by Elimination . . . . . . . . . . . . . . . . . . . . . 36
2.4.3 Solving Graphically . . . . . . . . . . . . . . . . . . . . . . 38
2.4.4 Solving Using Cramer’s Rule . . . . . . . . . . . . . . . . . . 39
2.5 Solving Quadratic Equations . . . . . . . . . . . . . . . . . . . . . . 39
2.5.1 Solving Graphically . . . . . . . . . . . . . . . . . . . . . . 41
2.5.2 Solving Using the Quadratic Equation Rule . . . . . . . . . . . 42
2.5.3 Solving by Factoring . . . . . . . . . . . . . . . . . . . . . . 43
2.6 Rational Equations (Equations with Fractions) . . . . . . . . . . . . . . 46
2.7 Transcendental Equations . . . . . . . . . . . . . . . . . . . . . . . . 47
2.7.1 Exponential Equations . . . . . . . . . . . . . . . . . . . . . 47
2.7.2 Logarithmic Equations . . . . . . . . . . . . . . . . . . . . . 48
2.8 Inequations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
2.8.1 Introducing Inequations . . . . . . . . . . . . . . . . . . . . 50
2.8.2 Solving Linear Inequations . . . . . . . . . . . . . . . . . . . 50
2.8.3 Solving Quadratic Inequations . . . . . . . . . . . . . . . . . 53
2.9 Scientific Example . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
Glossary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
Symbols Used in This Chapter (in Order of Their Appearance) . . . . . . . . . 56
Overview of Equations for Easy Reference . . . . . . . . . . . . . . . . . . . 57
Answers to Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
3 Trigonometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
Natasha Maurits
3.1 What Is Trigonometry and How Is It Applied? . . . . . . . . . . . . . 61
3.2 Trigonometric Ratios and Angles . . . . . . . . . . . . . . . . . . . . 63
3.2.1 Degrees and Radians . . . . . . . . . . . . . . . . . . . . . . 66
3.3 Trigonometric Functions and Their Complex Definitions . . . . . . . . 68
3.3.1 Euler’s Formula and Trigonometric Formulas . . . . . . . . . . 72
3.4 Fourier Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
3.4.1 An Alternative Explanation of Fourier Analysis: Epicycles . . . . 78
3.4.2 Examples and Practical Applications of Fourier Analysis . . . . . 79
3.4.3 2D Fourier Analysis and Some of Its Applications . . . . . . . . 83
Glossary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
Symbols Used in This Chapter (in Order of Their Appearance) . . . . . . . . . 89
Overview of Equations, Rules and Theorems for Easy Reference . . . . . . . . 90
Answers to Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
4 Vectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
Natasha Maurits
4.1 What Are Vectors and How Are They Used? . . . . . . . . . . . . . . 99
4.2 Vector Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
4.2.1 Vector Addition, Subtraction and Scalar Multiplication . . . . . 101
4.2.2 Vector Multiplication . . . . . . . . . . . . . . . . . . . . . 105
4.3 Other Mathematical Concepts Related to Vectors . . . . . . . . . . . . 113
4.3.1 Orthogonality, Linear Dependence and Correlation . . . . . . . 113
4.3.2 Projection and Orthogonalization . . . . . . . . . . . . . . . . 115
Glossary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
Symbols Used in This Chapter (in Order of Their Appearance) . . . . . . . . . 121
Overview of Equations, Rules and Theorems for Easy Reference . . . . . . . . 121
Answers to Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
5 Matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
Natasha Maurits
5.1 What Are Matrices and How Are They Used? . . . . . . . . . . . . . . 129
5.2 Matrix Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
5.2.1 Matrix Addition, Subtraction and Scalar
Multiplication . . . . . . . . . . . . . . . . . . . . . . . . . 131
5.2.2 Matrix Multiplication and Matrices
as Transformations . . . . . . . . . . . . . . . . . . . . . . . 133
5.2.3 Alternative Matrix Multiplication . . . . . . . . . . . . . . . . 136
5.2.4 Special Matrices and Other Basic Matrix Operations . . . . . . 137
5.3 More Advanced Matrix Operations and Their Applications . . . . . . . . 139
5.3.1 Inverse and Determinant . . . . . . . . . . . . . . . . . . . . 139
5.3.2 Eigenvectors and Eigenvalues . . . . . . . . . . . . . . . . . . 145
5.3.3 Diagonalization, Singular Value Decomposition,
Principal Component Analysis and Independent
Component Analysis . . . . . . . . . . . . . . . . . . . . . . 147
Glossary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153
Symbols Used in This Chapter (in Order of Their Appearance) . . . . . . . . . 154
Overview of Equations, Rules and Theorems for Easy Reference . . . . . . . . 155
Answers to Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161
6 Limits and Derivatives . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163
Branislava Ćurčic-Blake
6.1 Introduction to Limits . . . . . . . . . . . . . . . . . . . . . . . . . 163
6.2 Intuitive Definition of Limit . . . . . . . . . . . . . . . . . . . . . . 166
6.3 Determining Limits Graphically . . . . . . . . . . . . . . . . . . . . . 167
6.4 Arithmetic Rules for Limits . . . . . . . . . . . . . . . . . . . . . . . 169
6.5 Limits at Infinity . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170
6.6 Application of Limits: Continuity . . . . . . . . . . . . . . . . . . . . 172
6.7 Special Limits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173
6.8 Derivatives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174
6.9 Basic Derivatives and Rules for Differentiation . . . . . . . . . . . . . . 177
6.10 Higher Order Derivatives . . . . . . . . . . . . . . . . . . . . . . . . 180
6.11 Partial Derivatives . . . . . . . . . . . . . . . . . . . . . . . . . . . 181
6.12 Differential and Total Derivatives . . . . . . . . . . . . . . . . . . . . 183
6.13 Practical Use of Derivatives . . . . . . . . . . . . . . . . . . . . . . . 184
6.13.1 Determining Extrema of a Function . . . . . . . . . . . . . . 184
6.13.2 (Linear) Least Squares Fitting . . . . . . . . . . . . . . . . . 187
6.13.3 Modeling the Hemodynamic Response
in Functional MRI . . . . . . . . . . . . . . . . . . . . . . . 189
6.13.4 Dynamic Causal Modeling . . . . . . . . . . . . . . . . . . . 190
Glossary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192
Symbols Used in This Chapter (in Order of Their Appearance) . . . . . . . . . 192
Overview of Equations for Easy Reference . . . . . . . . . . . . . . . . . . . 193
Answers to Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197
7 Integrals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199
Branislava Ćurčic-Blake
7.1 Introduction to Integrals . . . . . . . . . . . . . . . . . . . . . . . . 199
7.2 Indefinite Integrals: Integrals as the Opposite of Derivatives . . . . . . . 200
7.2.1 Indefinite Integrals Are Defined Up to a Constant . . . . . . . . 200
7.2.2 Basic Indefinite Integrals . . . . . . . . . . . . . . . . . . . . 201
7.3 Definite Integrals: Integrals as Areas Under a Curve . . . . . . . . . . . 203
7.3.1 Multiple Integrals . . . . . . . . . . . . . . . . . . . . . . . 208
7.4 Integration Techniques . . . . . . . . . . . . . . . . . . . . . . . . . 209
7.4.1 Integration by Parts . . . . . . . . . . . . . . . . . . . . . . 209
7.4.2 Integration by Substitution . . . . . . . . . . . . . . . . . . . 212
7.4.3 Integration by the Reverse Chain Rule . . . . . . . . . . . . . 215
7.4.4 Integration of Trigonometric Functions . . . . . . . . . . . . . 217
7.5 Scientific Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . 219
7.5.1 Expected Value . . . . . . . . . . . . . . . . . . . . . . . . 219
7.5.2 Convolution . . . . . . . . . . . . . . . . . . . . . . . . . . 221
Glossary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 224
Symbols Used in This Chapter (in Order of Their Appearance) . . . . . . . . . 225
Overview of Equations for Easy Reference . . . . . . . . . . . . . . . . . . . 225
Answers to Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229
Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231

Related PDF Books